Algebra III Mid Term Exam

September 9 2015

This exam is of 40 marks. There are 10 questions and subquestions, each of 4 marks plus an extra credit question of 4 marks as well. Please read all the questions carefully and do not cheat. Good luck! (40)

1. Let R be a finite commutative ring. Show that every prime ideal is maximal .	(4)
2. Let R be a ring in which $a^4 = a$ for all $a \in R$. Is R commutative? Prove your answer	. (4)
3a. Prove that the polynomial $X^2 + 2X + 2$ is irreducible in $\mathbb{Z}[X]$.	(4)
3b. Is it irreducible in $\mathbb{Q}[X]$? Give reasons for your answer.	(4)
4. A module M is said to be simple if the only submodules of M are M and $\{0\}$. a. Give an example of a ring R and a simple R-module over it.	(4)
b. Let M be any R-module. Let $\operatorname{End}(M)$ denote the set of R-module homomorphisms such that $\phi(ra + sb) = r\phi(a) + s\phi(b)$ where $r, s \in R$ and $a, b \in M$. Show that	$\varphi: M \to M$
1. $\operatorname{End}(M)$ is a ring under addition and composition.	(4)
2. If M is a simple, non-trivial R module then $End(M)$ is a division ring (that is, elements are invertible).	all non-zero (4)
5. If $f \in \mathbb{Z}/p\mathbb{Z}[X]$, p a prime, is irreducible of degree n. Show that	
1. Show that $\mathbb{Z}/p\mathbb{Z}[X]/(f)$ is a field.	(4)
2. Does it have finitely many elements? If so how many?	(4)
6. Show that there are infinitely many primes of the form $4n + 3$.	(4)

7 (Extra Credit). Show that there are infinitely many primes of the form 4n + 1. (Hint: If $p|(N^2 + 1) \Rightarrow p \equiv 1 \mod 4 \text{ (Why?)})$. (4)